MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS

Dr. Winston W. Royee

INTRODUCTION

| am going ta describe my pec-onal views atrout managing large softere dovelapments, | have hadd
warious assignments during the past riv - years, mostly concerned with the development of software packages
for spaceeratt mission planning, commanding and post-flight analysis. |o these assignments | have experienced
different degrees of suceess with respect to arriving a1 an operational state, an-time, and within costs, | have
became prejudiced by my expariences ardd | am going to relate some of these prejudices in this presentation.

COMPUTER PROGRAM DEVELOPMENT FUNCTIONS

There are two essential steps commian g all computer program developments, regardless of sizo or
coimptesity. There is first an analysis srep, folloveed second by a cading step as depicted in Figure 1. This surt
of very simple implementation concept is in fact all that is required of the effort is sufficiently small and if the
final product is to be operated by thosc who built it — as is typically done with compuler programs for inernal
use, It is also the kind of developiment effort fur which mast customeds are happy to pay, since both steps
involve genuinely creative work which directly contributes to the wsefulnass of the final product. An
implementation plan to manufacture larger software systerms, and keyed only to these steps, howevar, is doomed

-t failure, Many additional development steps are required, none contribute as directly 1o the final produat as

analysis and coding, and all drive up the development costs, Customer personnel typically would rather not pay
for thern, and development personnel would rather not implement them, The prime function of management
15 to sell these concepts to both groups and then enforce compliance on the part of development personnel.

ANALYSIS

CODING

Figure 1. implementation steps to deliver a small computer program for internal operations,

A mare grandicse approach to software development is iltustrated in Figure 2. The analysis and coding
steps are still in the picture, bul they are preceded by two levels of requirements analysis, are separated by a
pragram design step, and followed by s testing step. These additions are treated separately from analysis and
coding because they are distinetly different in the way they are executed. They must be planned and stafted
differently for best utilization of prograrm resources.

Figure 3 portrays the iterative relalionship benwesn succossive develapment phasas for this schermc.
The ardering of steps is based on the following coneepl: that as each step progresses and the design is further
detailed, there is an iteration with the preceding and succeeding steps but rarely with the more réemote steps in
the sequence. The virtue of all of this is that as the design proceeds the change pacess is scoped down ta
manageable limits, Arany point in the design process after the requiremnents analysis 15 cornpleted there exisls
a firm and cleseup, moving baseling to which (4 «2turn in the event of unforesesen design difficulties. What we
have is an effectwe tallback posilion that tends to maximize the extant of early work that is salvageable and

proserved.

Reprined rom Proceedings, IEEE WESCON, August 197, pages 1-9.
Copyright 2 1870 hy The Lnstitite of Elevinics] und Elcctronics Engineers. L3268

Tnc. Originalty published by TRW,

SYSTEM

REQUIREMENTS

)

SOFTWARE
IREOUIFIEMENTS

™~

ANALYSIS

"

PROGRAM
DESIGN

=~

CODING

=

TESTING

)

OPERATIONS

Figure 2. implementation steps to develop a large computer program for delivery to a customer.

| believe in this concept, but the implementation deseribed above is risky and invites failure. The

problem is illustrated in Figure 4, The testing phase which occurs at the end of the development cycle is the

first event for which timing, storage, input/output transfers, etc., are experienced as distinguished from

analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various

external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated

code will not fix these kinds of difficulties. The required design changes are likely to be so disruptive that the

software requirements upon which the design is based and which provides the rationale for everything are

violated. Either the requirements must be modified, or a substantial change in the design is required. in effect

the development process has returned to the origin and one can expect up to a 100-percent overrun in schedule

and/or costs,

One might note that there has been a skipping-over of the analysis and code phases. Gne cannot, of

caurse, produce software without these steps, but generally these phases are managed with relative ease and

have little impact on requirements, design, and testing. {n my experience there are whole departments

consurmed with the analysis of orbit mechanics, spacecraft attitude determination, mathematical optimization

of payload activity and so forth, but when these departments have completed their difficult and complex work,

the resultant program steps involve a few lines of serial arithmetic code, if in the execution of their difficult

and complex work the analysts have made a mistake, the correction is invariably implemented by a minor

change in the code with no disruptive feedback tnto the other development bases.

However, | believe the illustrated approach 1o be fundamentally sound. The remainder of this

discussion presents five additional features that rnust be added to this basic approach to eliminate most of the

development risks.

329

SYSTEM
REQUIREMENTS

Y~

=

SOFTWARE
REQUIREMENTS

)

Y~

ANALYSIS

=\

Y

PROGRAM
DESIGN

"~

CODING

=)\

TESTING

R

"\

OPERATIONS

Figure 3. Hopefuily, the iterative interaction between the various phases is confined to successive steps

SYSTEM

REQUIREMENTS

SOFTWARE
REQUIREMEN

TS

——

ANALYSIS

=\

PROGRAM
DESIGN

i

CODING

)\

TESTING

OPERATIONS

Figure 4. Unfortunately, for the process illustrated, the design iterations are never confined to the successive steps.

330

STEP 1: PROGRAM DESIGN COMES FIRST

The first step towards a fix is Hllustrated in Figure 5. A preliminary program design phase has been
inserted between the software requirements generation phase and the analysis phase. This procedure can be
criticized on the basis that the program designer is forced to design in the relative vacuum of initial software
requirements without any existing analysis. As a result, his preliminary design may he substantially in error as
compared to his design if he were to wait until the analysis was complete. This criticism is correct but it misses
the point. By this technique the program designer assures that the software wilt not faii because of storage,
timing, and data flux reasons. As the analysis proceeds in the succeeding phase the program designer must
impose on the analyst the storage, timing, and operational constraints in such a way that he senses the
consequences. When he justifiably requires more of this kind of resource in order to implement his equations
it must be simultaneously snatched from his analyst compatriots. In thisway all the analysts and all the
program designers will contribute to 8 meaningful design process which will culminate in the proper allocation
of execution time and storage resources. If the total resources to be applied are insufficient or if the embryo
operational design is wrong it will be recognized at this earlier stage and the iteration with requirements and
preliminary design can be redone before final design, coding and test commaeances.

How is this procedure implemented? The following steps are required.

1} Begin the design process with program designers, not analysts or programmers,

2} Design, define and allocate the data processing modes even at the risk of being wrong. Allocate
processing, functions, design the data base, define data base processing, allocate execution time, define
interfaces and processing modes with the operating system, describe input and output processing, and define
preliminary operating procedures.

3} Write an overview document that is understandable, informative and current. Each and egvery
worker must have an elemental understanding of the system. At |east one person must have a deep understand-

ing of the system which comes partially from having had to write an overview document,

"N

N

PRELIMINARY

PROGRAM
DESIGN \

DOCUMENT
SYSTEM
OVERVIZW

DESIGN
DATA BASE
AND
PROCESSORS

ALLOCATE
SUBROUTINE
STORAGE

DESCRIBE
OPERATING
PROCEDURES

ALLOCATE
SUBROUTINE
EXECUTION
TIMES

Figure 5. Step 1: Insure that a preliminary program design is complete before analysis begins,

STEP 2: DOCUMENT THE DESIGN

At this point it is appropriate to raise the issue of — “how much documentation?”” My own view is
“quite a lot;"”" certainly more than most programmers, analysts, or program designers are willing to do if left to
their own devices. The first rule of managing software development is ruthiess enforcement of documentation
requirements,

Occasionally | am called upon to review the progress of other software design efforts. My first step is
to investigate the state of the documentation. |f the documentation is in sericus default my first
recommendation is simple. Replace project management, Stop all activities not related 10 documentation.
Bring the documentation up to acceptable standards. Management of software is stmply impossible without a
very high degree of documentation. As an example, let me offer the following estimates for comparison. In
order to procure a 5 million dollar hardware device, | would expect that a 30 page specification would provide
adequate detail to control the procurement, In order to procure b million dofars of software | would cstirnate
4 1200 page specification is about right in order to achieve comparable control,

Why 20 much documentation?

1} Each designer must communicate with interfacing designers, with his management and possibly
with the customer, A verbal record is too intangible to provide an adequate basis for an interface or manage-
ment decision. An acceptabte written description forces the designer to take an uneguivocal position and
provide tangible evidence of completion, It prevents the designer from hiding behind the - ' am 90 percent
tfinished" — syndrome month after month.

2} During the early phase of software development the documentation is the specification and_is the
design. Until coding begins these three nouns {documentation, specification, design} denote a single thing. If
the documentation is bad the design is bad. If the documentation does not yet exist there is as yet no design,
orly people thinking and tatking about the design which is of some value, but not much.

3} The real monetary value of good documentation begins downstream in the development process
during the testing phase and continues through operations and redesign. The value of documentation can be
described in terms of three concrete, tangible situations that every program manager faces,

a} During the testing phase, with good documentation the manager can concentrate personnel on the
mistakes in the program. Without good documentation every mistake, large or small, is analyzed by one man
who probably made the mistake in the first place because he is the only man who understands the program area.

b} During the operational phase, with good documentation the manager can use operation-oriented
personnet 1o operate the program and to do a better job, cheaper. Without good documentation the software
must be operated by those who built it. Generally these people are relatively disinterested in operations and do
not da as effective a job as operations-oriented personnel. 1t should be pointed out in this connection that in
an gperational situation, if there is some hangup the software is always blamed first. {n order either to absolve
the software or to fix the blame, the software documentation must speak clearly.

c} Following initial operations, when system improvernents are in order, good documentation permits
effective redesign, updating, and retrofitting in the field. If documentation does nat exist, generaliy the entire
existing framework of operating software must be junked, even for reletively modest changes.

Figure 6 shows a documentation plan which is keyed to the steps previously shown, Note that six
documents are produced, and at the time of delivery of the final product, Documents No. }, No. 3, No. 4,

No. 5, and No, 6 are updated and current.

332

‘palinbas 212 SIUBLWINDOP JUS4BLLIP AjBNDIUN XI5 1SB3] 12 — 319(dWOD pUE TUSIIND §i UCIIEIUSWNIOP 1Byl aInsu| :Z dalg g sunbig

SNOLLONYLSNL
DNILYHIJO

970N LNIWNOODO

SNOLLYHIdO

N

12345}
NDIS3a

DNILSIL

S$17N1S34 153L

{03d8) ONIGOD

NY1d LS3L
S "ON LNIWNRO0A

1034s)
NO{S3a
FIVIHILN
£ 0N LNIWNJI0A

L]

~

14108 59
NOI3qg NENS3Aa
T¥NI4 WYHOOHY

__ ¥ 0N LNIWND0G

/ (23d5}
12348} \ NOIS3Q
NY1d 153l SISATYNY ANYNIWIT3dd

Z 'ON 1N3WA20a

115 "ON LNIWNJ0Q

N

NoIS3a I s1nawasnoan
WYHE0Hd JUYMLIOS
AUYNIWM 38d L "ON ENIWND0Q

N

SLNIWIHINDIY
JHVYMLIOS

N

SINIFWIHINDIY
WILSAS

STEP 3: DOIT TWICE

After documentation, the second most important criterion for success revolves around whether the
product is totally ariginal. {f the computer program in question is being developed for the first time, arrange
matters so that the version finally delivered to the customer for operational deployment is actually the second
version insofar as eritical design/operations areas are concerned. Figure 7 illustrates how this might be carried
out by means of a simulation. Note that it is simply the entire process done in miniature, 10 a time scale that
is relatively small with respect to the overall effort. The nature of this effort can vary widely depending
primarily on the overall time scale and the nature of the critical problem areas to be modeled. 1f the effort runs
30 rnonths then this early development of a pilot model might be scheduled far 10 months. For this schedule,
tairly formal controls, documentation procedures, etc., can be utilized. |f, however, the overall effort were
reduced to 12 months, then the pilot effort could be compressed to three months perhaps, in order to gain
sufficient leverage an the mainline development. In this case a very special kind of broad competence is
reguired on the part of the personnel involved. They must have an intuitive feel for analysis, coding, and
program design. They must quickly sense the trouble spots in the design, model them, model their alternatives,
forget the straightforward aspects of the design which aren’t worth studying at this early point, and finally
arrive at an error-free program. In either case the point of all this, as with a simulation, is that guestions of
timing, storage, etc, which are otherwise matters of judgment, can now be studied with precision. Without
this simulation the project manager is at the mercy of human judgment. With the simulation he can at least
perform experimental tests of some key hypotheses and scope down what remains for human judgment, which
in the area of computer program design {as in the estimation of takcoff gross weight, costs to complete, or the

daily double) is invariably and seriously optimistic,

N

\

PRELIMINARY
PROGRAM
DESIGN \
ANALYSIS
PRELIMINARY \
DESIGN
ANALYSIS PROGRAM
DESIGN
PROGRAM \
DESIGN
DING
co CODING

TESTING _} \

USAGE TESTING \

\

_—__* OPERATIONS

Figure 7. Step 3: Attempt to do the job twice — the first result provides an early simulation of the final product,

334

STEP 4: PLAN, CONTROL AND MONITOR TESTING

Without question the biggest user of project resources, whether it be manpower, computer time, or
management judgment, is the test phase, [t is the phase of greatest risk in terms of dollars and scheduie, It
oceurs at the latest point in the schedule when backup alternatives are least available, if at al.

The previous three recommendations to design the program before beginning analysis and coding, 1o
document it completely, and to build a pilot modef are alf aimed at uncovering and solving problems before
entering the test phase, However, even after doing these things there is still a test phase and there are stil)
important things to be done. Figure § lists some additionai aspects to testing. In planning for testing, | would
suggest the following for consideration,

1} Many parts of the test process are best handled by test specialists who did not necessarily
contribute to the original design. If it is argued that only the designer can perform a thorough test because
only he understands the area he built, this is a sure sign of a failure to document properly. With good
documentation it is feasible to use specialists in software product assurance who will, in my judgment, do a
better job of testing than the designer,

©. 2} Most errors are of an obvious nature that can be easily spotted by visual inspection. Every bit
of an analysis and every hit of code should xe subjected to a simple visual scan by a second party who did not
do the original anatysis or code but who would spot things like dropped minus signs, missing factors of two,
jumps to wrong addresses, etc., which are in the nature of proofreading the analysis and code. Do not use the
computer to detect this kind of thing — it is toa expensive.

3} Test every logic path in the computer program at least once with some kind of numerical check, If
| were a customer, | would not accept defivery until this procedure was completed and certified. This step will
uncover the majority of coding errors,

YWhile this test procedure sounds simple, for a large, complex computer program it is refatively difficult
to plow through every logic path with controlled values of input. In fact there are those who will argue that it
is very nearly impossible. In spite of this I would persist in my recommendation that every logic path be
subjected to at feast one authentic check,

4] After the simple errors {which are in the majority, and which obscure the big mistakes} are removed,
then it is ttme to turn over the software to the test area for checkout purposes. At the praper time during the
course of development and in the hands of the proper person the computer itself is the best device for
checkout. Key management decisions are: when is the time and who is the person to do finat checkout?
STEP5: INVOLVE THE CUSTOMER

For sarme regson what a software design is going to do is subject to wide interpretation even after
previcus agreement. It is important to involve the customer in a formal way so that he has committed
himself at earlier points before final delivery, To give the contractor free rein between requirement
definition and operation is inviting trouble, Figure 9 indicates three points following requirements definition

where the insight, judgment, and commitment of the customer can bolster the development effort.

SUMMARY

Figure 10 summarizes the five steps that | feel necessary to transform a risky development process
into ane that will provide the desired product. | would emphasize that each item costs come additional sum
of money. If the relatively simpler process without the five complexities described here would work
successfully, then of course the additional money is not well spent. |r. my experience, however, the simpler
method has never warked on large software development efforts and the costs to recover far exceeded those

required to finance the five-step process listed.

335

IONVNILNIVI
334$ "MOHLNOD
NOILYHOSIAN0D

‘Builsa) weiBosd 191ndwioo 1011UOW PUR *|0I3U00 ‘ueld :y deig g ainbiy

N

S1004
'§34NAII0Hd
‘SAHYANYLS
153l

ONILS3aL

N\

$3INDINHI3L

JINVUNSSY
142NQoyd

asn

N9IS30
WvdHO0Hd

HL¥d 1901

N

dNOYD 1831
J3AHIV L0 OGNV
SNOWONOLNY

AH3IAT 1531

ONILSIL

340339
3309 L23d45N
ATIVOSIA

336

SNOILYHIJO

MIIATY
IDNYLAIIDY
AHYMLAO0S

TYNId

‘Buinuiuoo pue “yidap-ul |04 3 PjNOYS JUALISA|OALT 8YT — JBLIOISND aul aa|0ALly G daig g aanbigy

ONILS3L

N

ONIQOD

MIIATH
JHYMLIO0S
TYIILIYD

NDiIS3a
WYHOO

N

SISATYNY

M3IATH
JHYMLAOS
ABYNINITIHd

NOIS3a
WYHOOHd
AHYNINITIHd

N

SINIWIHINDIY

IWTMLL0S

NOILYHINID
SLNINIHIND3AY
NIALSAS

(3Lvadn)
SINIWIHINDIY
W3LSAS

137

TNOLL YO

L
)
1
[
[3
]
]
1
[]
1
[]
1
]

DML

\

NGOG

HIWOLEND ML IATOANI S

DAHOLINOW Oy

OITIOHLNGD "HINNYI 3 A5 DHLLEAL ¥
g

FIRISE0 S 37IML B0 THL 0D €

11 ITANCD ONY
ALNIHHND 30 LMW NOLLYLNIND00 T

SNID38 HNIAED ONY SISATVNY
AH0438 HDI5 33 WeBD0Ed 3L3TN00 L

L ETEED)

RYHIO!

id

SHCHLINH 1SN
DNLLYB3C

THOLLYHIND

SIEATVYNY

N\

L EILEL]
ANV LIV
IYYMLIGE

Alewsung

i (F]

[

L]

LUTExN]

‘04 2anb1y

5 "OM LNINNIOC

[F5d45
N¥Y7d 1531

LLEILEL
ECLLTE]
AVILIED

NDIZ3A
WyHDOHd

I

JAH

vn.

SHYMLIDS

N\

SLNINIBINTIH
NALSAS

HINS30
WYHDO N —

SISATYNY

WDIS3AA
AHVNINITIEY

/=

e
TNILE3L
NI

NoIs3a
: NI
-,ozS!iﬁon

12348}
NDIE3)
IV AHIALNI
E DN INSWMD0A

{2348}
NDIERD
AHYNIWINIdd

MIIATY
IYYMLIOE
A c(!_ﬁﬁ T3kd

Wid
SIEATTNY

HDIS30
WY HDDHd
AHYNINITIEG

N

HOILLYHINGD
SLNANIHINDIY
MALSAS

SLNINIBINDAY \

WALSAS

SINANIHINDIH

FHYMLIOE

\

338

